
LLNL-PROC-676587

Advances in the ab initio
description of nuclear
three-cluster systems

C. Romero Redondo, S. Quaglioni, P. Navratil, G.
Hupin

August 26, 2015

21st International Conference on Few-Body Problems in
Physics
Chicago, IL, United States
May 18, 2015 through May 22, 2015



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



EPJ Web of Conferences will be set by the publisher
DOI: will be set by the publisher
c� Owned by the authors, published by EDP Sciences, 2015

Advances in the ab initio description of nuclear three-cluster sys-
tems

Carolina Romero-Redondo1,a, Sofia Quaglioni1,b, Petr Navrátil2,c, and Guillaume Hupin3,d

1Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
2TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada
3Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex, France

Abstract. We introduce the extension of the ab initio no-core shell model with contin-
uum to describe three-body cluster systems. We present results for the ground state of
6He and show improvements with respect to the description obtained within the no-core
shell model and the no-core shell model/resonating group methods.

1 Introduction

The ab initio no-core shell model/resonating group method (NCSM/RGM) was presented in [1, 2]
as a technique that is able to describe both structure and reactions in light nuclear systems. Within
this approach, the wave function is expanded in a continuum cluster basis using the resonating group
method with realistic interactions and a consistent ab initio description of the nucleon clusters.

The method was first introduced in detail for two-body cluster bases and has been shown to work
e�ciently in di↵erent systems [1–4]. Later, the expansion of the method for three-cluster systems was
introduced in [5, 6].

The capability of ab initio methods to properly describe three-body cluster states is essential for
the study of nuclear systems that present such configuration. This type of systems appear, e.g, in
structure problems of two-nucleon halo nuclei such as 6He and 11Li, resonant systems such as 5H or
transfer reactions with three fragments in their final states such as 3H(3H,2n)4He or 3He(3He,2p)4He.

Despite the success of the NCSM/RGM in describing the long range behavior of the wave func-
tions, it has been shown that it has limitations when it comes to accurately account for short range
correlations, which is necessary to achieve a complete description of the system. This is due to fact
that to account for such correlations, several excited states of the nuclear clusters must be included
in the basis, resulting in an increase of the problem size that goes beyond current computational ca-
pabilities. This limitation has been overcome by introducing the ab initio no-core shell model with
continuum (NCSMC). With this method, the wave function is written as a superposition of both con-
tinuum NCSM/RGM cluster states and discrete eigenstates of the compound system obtained with
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Table 1. Energy (in MeV) for the 6He ground state using the NCSM/RGM, NCSM and NCSMC approaches at
N

max

=12. For the NCSM we also show the extrapolated value to N

max

! 1.

Nmax NCSM/RGM NCSM NCSMC
8 �28.62 �28.95 �29.69
10 �28.72 �29.45 �29.86
12 �28.70 �29.66 �29.86

Extrapolation — �29.84(4) —

the no-core shell model (NCSM). The latter eigenstates compensate for the missing cluster excita-
tions improving the description of short range correlations.

The NCSMC was first introduced in [7, 8] for binary systems. Its expansion to three-cluster
systems was recently achieved and we show here the first results for the 6He ground state (g.s).

2 Formalism

In the NCSMC, the ansatz for the three-cluster many-body wave function is given by
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⇡
T

⌫xy i ,

where c� and G

J

⇡
T
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are the NCSM eigenstates labeled by the set of quantum number �, Â⌫ is an appropriate intercluster
antisymmetrizer introduced to exactly preserve the Pauli exclusion principle, and
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are three-body cluster channels of total angular momentum J, parity ⇡ and isospin T where ⌫
represents a set of quantum numbers that describes the channel within the cluster basis, Here,
|A � a23 ↵1I

⇡1
1 T1i, |a2 ↵2I

⇡2
2 T2i and |a3 ↵3I

⇡3
3 T3i denote the microscopic (antisymmetric) wave func-

tions of the three nuclear fragments calculated within the NCSM. The Jacobi coordinates describing
the relative positions of the clusters are denoted by ⌘23 and ⌘1,23.

We calculate the unknowns of the NCSMC wave function [c� and G

J

⇡
T

⌫ (x, y)] by solving the or-
thogonalized coupled equations obtained by projecting the Schrödinger equation on the model space
spanned by NCSM eigenstates and the NCSM/RGM basis. Those equations are solved by means of
the microscopic R-matrix method in a Lagrange mesh [9]. Details on the procedure will be available
in [10].

3 Application to 6He

The lightest Borromean nucleus is 6He [11, 12], formed by an 4He core and two halo neutrons. It is,
therefore, an ideal first candidate to be studied within a three-body formalism. Hence, it was used as
a test case when the NCSM/RGM formalism for three-cluster dynamics was introduced in [5, 6] and
here is studied again in order to perform a benchmark with such results. In this first calculation, we
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Figure 1. Most relevant hyperradial contributions to the 6He g.s. wave function. Both the contribution from the
NCSM wave function and the total NCSMC wave function are shown for a N

max

= 6 model space. The figure
shows how the addition of the three-cluster basis within the NCSMC compensates the limitations of the NCSM
to obtain an extended wave function characteristic of two-neutron halo nuclei. The hyperradial wave functions
u

K⌫(⇢) are the coe�cients of the wave function when expanded in the hyperspherical basis, where K represents
the hypermomentum.

describe the 4He core only by its g.s. wave function and couple the three-cluster basis with the 6He
g.s. eigenstate obtained through the NCSM.

We used the same potential used in [5, 6], i.e., the similarity-renormalization-group (SRG) [13, 14]
evolved potential obtained from the chiral N3LO NN interaction [15] with ⇤SRG = 1.5 fm�1. With
this soft potential the binding energy can be accurately computed by extrapolating the NCSM results
to N

max

! 1, hence providing a good benchmark for the newly implemented NCSMC.
From Table 1, we can see that the NCSMC g.s. energy quickly converges to the NCSM extrapo-

lated value, unlike in the NCSM/RGM. This is due to the fact that the 6He NCSM eigenstate takes into
account the short range correlations and 4He core polarization that are missing when considering the
cluster basis alone. It is also important to note that, in contrast to the behavior o↵ered by the NCSM,
the NCSMC recovers the correct extended asymptotic behavior of the wave function. In Fig 1 such
comparison is shown in a preliminary calculation in an N

max

= 6 model space.
Finally, we can also compare the probability densities from the 6He g.s. obtained with the

NCSM/RGM and the NCSMC. In Fig. 2, such comparison is shown and it is interesting to find that
while the two main configurations (di-neutron and cigar) appear to have the same probability within
the NCSM/RGM, the di-neutron probability is enhanced when using the NCSMC. This asymmetry in
the strength of the probability peaks is known to be a characteristic of 6He and these results show that
it is a consequence of the short range correlations.

4 Conclusions

The NCSMC uses an ansatz wave function that includes both an expansion in a continuum three-
cluster basis and in a discrete basis of NCSM eigenstates. This provides a foundation that is capable
of describing both short and long range characteristics of three-cluster systems. In the case of the
6He g.s., we could see that this approach provides both the correct binding energy and extended
asymptotic behavior unlike the NCSM that does provide the correct binding energy, but not the correct
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Figure 2. Probability distribution of the 6He g.s. wave function in terms of the relative distance between the
neutrons (r

nn

) and the distance between the center of mass of the neutrons and the 4He (r↵,nn

). The di-neutron
and cigar configurations appear to have the same probability within the NCSM/RGM (a), while the di-neutron
probability is enhanced when using the NCSMC (b).

asymptotics, or the NCSM/RGM that does the oposite. Calculations in larger model spaces for both
g.s. and continuum states of 6He are underway.
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